Study the example problem showing how to evaluate expressions with exponents. Then solve problems 1-9.

Example

Follow the order of operations to simplify $12 - 3^2$.

First find 32.

$$3^2 = 3 \cdot 3$$

Then subtract 9 from 12. 12 - 9 = 3

$$12 - 9 = 3$$

This means that:

$$12 - 3^2 = 12 - 9$$

= 3

The value of the expression is 3.

Explain why you must simplify 32 first.

Diallo says that the value of $12 - 3^2$ is 81. How did he get that answer?

Maggie says that if the expression was $12 \div 3^2$, you would divide before simplifying 32. Is she right? Explain.

Suppose the expression was $(12 - 3)^2$. Would you still simplify 32 first? Explain.

Solve.

What is the value of $4 + 2^3 \cdot 3$?

Show your work.

Solution:

- What is the value of $\frac{4^2}{2}$? Describe the steps you took to find your answer.
- Darren and Barb each tried to evaluate $6^2 + 4 \div 2$.

Darren

$$6^{2} + 4 \div 2$$

= $36 + 4 \div 2$
= $40 \div 2$
= 20

$$6^{2} + 4 \div 2$$

$$= 36 + 4 \div 2$$

$$= 36 + 2$$

$$= 38$$

Who evaluated the expression correctly? Explain what the other student did wrong.

- Use the numbers 8, 6, and 2 and one operation to write an expression that includes an exponent and has a value of 8. Use each number only once.
- Show where to place parentheses in the expression $4 + 3^2 \cdot 5 2$ so that the value of the expression is 31. $4 + 3^2 \cdot 5 2$