Properties and Equivalent Expressions

Study the example showing how to use properties of operations to write equivalent expressions with variables. Then solve problems 1–9.

Example

Four students are buying tickets to a play. The tickets cost \$5 each plus a service fee. The expression 4(5 + x)

represents the total cost. Write an expression that is equivalent to 4(5 + x).

You can use math tiles to model 4(5 + x).

From the math tiles, you can see that the expression 4(5 + x) =

Simplify the expression in the example.

What are the factors in the expression 4(5 + x)?

Show how to use the distributive property to simplify 4(5 + x).

Are the expressions (5 + 5 + 5 + 5) + (x + x + x + x) and 4(5 + x) equivalent? If so, write another expression that is equivalent to both of them. If not, explain why not.

Solve.

Use the distributive property to find two expressions that are equivalent to 7(3x - 4).

A rectangular play area is 8 yards long. The expression 56 + 8x represents the area of the play area in square yards. What expression represents the width of the play area in yards? Draw a picture to model the problem.

Show your work.

Solution:		
SOIGHTOIN		

Use the distributive property to write two expressions that are equivalent to 12 + 30x. Describe the steps you follow to find the expressions.

Are 9(4 - x) and 36 - 9x equivalent expressions? Explain how you know.